16th Australian Influenza Symposium

13-14 November 2025

Peter Doherty Institute for Infection and Immunity Melbourne

Welcome

The WHO Collaborating Centre for Reference and Research on Influenza welcomes you to the **16**th **Australian Influenza Symposium 2025** at the Doherty Institute for Infection and Immunity, Melbourne, Victoria. We would especially like to thank all of the speakers for agreeing to present their work at the Symposium. Finally, we wish to acknowledge the following:

Symposium Organising Committee:

WHO Collaborating Centre for Reference and Research on Influenza:

- Prof. Ian Barr
- Prof. Patrick Reading
- Ms Symone Mercuri
- Ms Vishma Varsani
- Ms Katie Milne

Travelling scholars program by SK Bioscience, South Korea

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

We are especially thankful for the financial support from:

Acknowledgement of Country:

In the spirit of reconciliation, the WHO Collaborating Centre for Reference and Research on Influenza, VIDRL and the Doherty Institute, acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their Elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.

Contents

Program Day 1	1
Program Day 2	2
Abstracts	
Day 1:	3-11
Plenary Session 1	3
Plenary Session 2	4
Plenary Session 3	6
Plenary Session 4	10
Roundtable Discussion	12
Day 2:	13-24
Plenary Session 5	13
Plenary Session 6	16
Plenary Session 7	19
Plenary Session 8	24
2025 Delegates	25-27
ZUZJ DEIEKALES	25-27

Social Media

- Social media is permitted at AIS
- WHO CC Melbourne's Twitter handle is @WHOFluCCMelb, LinkedIn is WHO Collaborating Centre for Reference and Research on Influenza and Blue sky is whofluccmelb.bsky.social
- AIS event hashtag is #AIS2025Melbourne
- Please do not include any talks/slides speakers specifically request NOT be included in social media

Program Day 1

9:00	Meeting opening and logistics: Ian Barr, WHO CC, D	oherty Institute, Melbourne, VIC
9:10	Opening remarks	· · · · · · ·
Plenar		. Doherty Institute. Melbourne.
09:15	Andy Bowman, Ohio State University, USA	The Udder Story: H5N1 Pathogenesis, Transmission Paradox, and Cross-Immunity
09:45	Erik Karlsson, Institut Pasteur Cambodia, Cambodia	A New A/H5N1 Reassortant Genotype Infecting Poultry, Humans, and Big Cats in the Greater Mekong Subregion
10:15	Emily Martin, University of Michigan, USA	Innovations in Cohort Studies for Respiratory Virus Response
10:45	Morning tea	
	y Session 2 Chair: Jodie McVernon; Doherty	
11:15	Ben Cowling, Hong Kong University, Hong Kong SAR	Repeated influenza vaccination effects in a randomised placebo-controlled trial
11:40	Nikki Moreland, Auckland Uni., Auckland, NZ	Evolving Applications of Serology: From tracking SARS-CoV-2 exposure to exploring post-pandemic immunity gaps in Aotearoa New Zealand
12:00	Bette Liu, NCIRS, Sydney, NSW	COVID-19 vaccine effectiveness and impact on mortality in Australia
12:20	Shidan Tosif, RCH, MCRI, Melbourne	The Victorian RSV Program Journey: Lessons from Early Implementation
12:40	Thomas Williams, University of Edinburgh, Scotland	Maternal RSV vaccination program in the UK Title to be confirmed (PRE-RECORD)
13:00	Lunch	
Abstra	cts Session 3 Virology Chair: Marios Koutsa	akos & Adam Wheatley, Uni Melbourne
13:45	Ahmed Quadeer, University of Melbourne DMI	Inferring effects of mutations on SARS-CoV-2 transmission from genomic surveillance data
14:00	Saira Hussain, WHOCC Doherty Institute, Melbourne	Development of a novel long-acting pan-antiviral to influenza
14:15	Callum Lay, ACDP, CSIRO, Geelong	Analysis of H5NX Avian influenza diffusion, evolution an recombination in South-East Asia
14:30	Lara Schwab, University of Melbourne	Antigenic evolution of the influenza B virus hemagglutini over 81 years
14:45	Maddy Belfrage, ACDP, CSIRO, Geelong	Antigenic characterisation of Australian H7 highly pathogenic avian influenza virus under immunological pressure
15:00	Rebecca Rockett, Westmead Hospital, Sydney	Novel methods to rapidly perform genomic epidemiology on a broad spectrum of respiratory pathogens
15:15	Afternoon tea	
Plena Institu	ry Session 4 and Panel discussion Chair & N te	Moderator: Michelle Wille, WHO CC, Doherty
15:45	Jenna Hassall & Lauren Kutzner, Australian Centre for Disease Control, Canberra	National summary of the 2025 respiratory season and the Australian Respiratory Surveillance Report
16:10	Oliver Eales, University of Melbourne	Real-time situational assessment of respiratory virus epidemics in Australia and New Zealand over winter 202
Rounc	Itable: Should we focus on ameliorating the eff	ects of the big 3 respiratory viruses (seasonal
influen vaccine	· · · · · · · · · · · · · · · · · · ·	pout the next pandemic, now that we have mRNA
16:30	Discussion Panel members	Andy Bowman, Erik Karlsson, Nikki Moreland, David Speers, Emily Martin.

Program Day 2

	y, 14 November 2025	
Plena		dates Chair: Ian Barr, WHO CC, Doherty Institute
08:30	Upasna Varma, GSK, Melbourne	Options for co-administration of the AS01E-adjuvanted respiratory syncytial virus (RSV) prefusion F protein (adjuvanted RSVPreF3) vaccine with other adult vaccines: a review of existing data
08:50	Keith Chappel, Uni Queensland, Brisbane	The Molecular Clamp Platform: A broadly applicable solution to the manufacture of multipathogen subunit vaccines
09:10	Merrin Tulloch, AstraZeneca, Australia	Live Attenuated Influenza Vaccine: Southern Hemisphere Nasal Spray Flu Vaccine for 2026
09:30	Najwa Ejje, Sanofi Australia	Combination COVID-19 and Influenza Vaccines: Development Landscape and Potential Public Health Implications
09:50	Jules Bayliss, Sequris Australia	The ABC of Flu Vaccines: Consideration for Innovation and Public Health
10:10	Tor Beiring, Sorensen University of Copenhagen	DAN-RSV: RSVpreF Vaccine for preventing cardiorespiratory hospitalisation
10:30	Morning tea	
Plena	ry Session 6 Chair: Siobhan St George, Departi	ment of Health, Disability and Ageing, Canberra
11:00	David Speers, Pathwest, WA	Human metapneumovirus, the other respiratory paramyxovirus, incidence and genomic diversity during a pandemic era in Western Australia
11:20	Avram Levy, Pathwest, WA	Evolving Capacity and Challenges in Wastewater Surveillance for Respiratory Viruses
11:40	Annette Fox, WHO CC, Melbourne, Victoria	The first Australian Influenza Controlled Human Infection Study (CHIM): Immune Correlates of Viral Clearance and Symptoms
12:00	Arutha Kulasinghe, Uni Queensland, Brisbane	Viral Cartography: Understanding the impact of severe COVID on multiple organ systems
12:20	Lunch	
Abstr	acts Session 7 Epidemiology Chair: Freya She	arer Uni Melb. & Craig Dalton, Uni Newcastle
13:00	Jules Bayliss, Seqirus, Melbourne	Relative Effectiveness of Cell-Based Versus Egg-Based Quadrivalent Influenza Vaccines Across Paediatric Populations During the 2023-24 Influenza Season in the United States and Public Health Impact on Australia."
13:15	Julian Carlin, University of Melbourne	Cost-effectiveness of immunising interventions to reduce respiratory syncytial virus disease burden in infants in Australia
13:30	Jenny Herz, Biointelect, Sydney	Australia's new incubator for vaccine and infectious disease innovation
13:45	Zubair Akhtar, Kirby Institute, Sydney	Epidemiology of respiratory syncytial virus (RSV) within a New South Wales-based multi-centre health district between 2018-2024 in Australia
14:00	David Muscatello, UNSW, Sydney	Are known influenza or COVID-19 infections documented in Australian hospital databases?
14:15	Janaki Amin, Health Protection NSW, NSW Ministry of Health	The NSW 2024 RSV immunisation program: targeted effectiveness and population level impact.
14:30	Afternoon tea	
Plena	ry Session 8 Chair: Ben Cowling, Hong Kong U	niversity, Hong Kong SAR China
15:00	Emily Martin, University of Michigan, USA	Seek and You Will Find: Co-Circulating Viruses in Epidemiology and Effectiveness Studies
15:30	Andy Bowman, Ohio State University, USA	Hogging the Flu? Surveillance and Immune Gaps at US Swine Exhibitions
16:00	Closing comments	lan Barr

Abstracts

Day 1	Plenary Session 1
9:15	The Udder Story: H5N1 Pathogenesis, Transmission Paradox, and Cross- Immunity
Speaker	Andy Bowman, Ohio State University, USA

Authors

Natalie Tarbuck¹, Cody Warren², Andrew Bowman¹

Affiliations

- 1. The Ohio State University, Department of Veterinary Preventive Medicine
- 2. The Ohio State University, Department of Veterinary Biosciences

Abstract

The emergence of highly pathogenic avian influenza (HPAI) A(H5N1) in U.S. dairy cattle, initially highlighted by widespread viral nucleic acid detection in retail milk surveillance, represents a significant shift in our understanding of influenza A virus host range, specifically revealing a strong tropism for the bovine mammary gland. We investigated the pathogenesis and transmission of the B3.13 genotype in lactating dairy cattle. Experimental studies demonstrated that intramammary (IM) inoculation with an extremely low dose (10 TCID_{50}) was sufficient to establish robust infection, high-titer viral shedding in milk (peaking $10^8 \text{ TCID}_{50}/\text{mL}$), and clinical mastitis, consistent with severe outcomes observed on farms. However, despite the low infectious dose and high shedding, we were unable to recapitulate transmission via contaminated milking equipment or close contact under experimental conditions. This critical finding challenges current transmission hypotheses and suggests that unidentified agent, host, or environmental cofactors are necessary for the efficient spread observed in the field.

Given the continued spread and risk of endemicity, we assessed the impact of pre-existing immunity on clinical disease and viral replication. Dairy cows naturally exposed to the B3.13 genotype (April 2024) and naïve controls were experimentally re-infected via the IM route with low or high doses of homologous (B3.13) or heterologous (D1.1) viruses. Naïve controls infected with either genotype developed fever and significant reductions in milk yield, shedding high titers of infectious virus. In contrast, re-infected cows showed restricted viral replication, with limited or no infectious virus recovered, despite detection of viral RNA. Homologous (B3.13) re-infection provided complete protection against clinical disease at both doses. However, heterologous (D1.1) challenge still induced fever, transient morbidity, and gross mammary lymph node pathology, comparable in some respects to naïve controls. These findings indicate that prior H5N1 exposure effectively restricts the shedding of infectious virus, likely reducing transmission potential, but partial immunity against evolving heterologous strains may still permit clinical disease and tissue pathology, underscoring the urgency for continued viral surveillance.

Day 1	Plenary Session 1
9:45	A New A/H5N1 Reassortant Genotype Infecting Poultry, Humans, and Big Cats in the Greater Mekong Subregion
Speaker	Erik Karlsson, Institut Pasteur Cambodia, Cambodia

Authors

Erik Albert Karlsson¹

Affiliations

1. Virology Unit, Institut Pasteur du Cambodge

Abstract

Highly pathogenic avian influenza (HPAI) A/H5N1 viruses have circulated endemically in poultry across the Greater Mekong Subregion for nearly two decades, periodically spilling over into humans and other mammals. Between 2023 and 2025, Cambodia and Vietnam have detected multiple human and animal infections linked to a novel reassortant clade 2.3.2.1e genotype, underscoring the ongoing viral evolution occurring within an endemic ecosystem. In Cambodia, 33 laboratory-confirmed human infections were detected between February 2023 and October 2025, 17 of which occurred in 2025. Fourteen deaths were reported, corresponding to an overall case-fatality rate of 42.4% (47.1% in 2025). All cases had direct or indirect exposure to sick or dead poultry, with no evidence of human-to-human transmission. In Vietnam, sudden mortality among tigers, lions, and a leopard at two zoological facilities during August and September 2024 was confirmed to result from A/H5N1 infection. Whole-genome sequencing of viruses

from seven tigers and one leopard revealed a monophyletic cluster with minimal genetic divergence and near identity to poultry isolates from a concurrent farm outbreak, indicating a single-source feedborne exposure with limited or no onward transmission. One human H5N1 infection was also detected in Vietnam during this period.

Genomic analysis revealed that the viruses belonged to a novel reassortant genotype derived from regionally endemic clade 2.3.2.1e viruses that had acquired gene segments through two reassortment events from clade 2.3.4.4b and low-pathogenic avian influenza viruses. Mammalian-associated markers, including PB2 E627K, HA T156A, HA S110N, and PB1 H99Y, were detected in poultry, human, and felid sequences, suggesting enhanced polymerase activity and altered receptor binding affinity in mammalian hosts.

These findings highlight the continued diversification and persistence of A/H5N1 in the Greater Mekong Subregion and the recurrent spillovers that occur at the animal—human interface. The detection of a single reassortant genotype across poultry, felids, and humans illustrates the interconnected nature of viral evolution in shared ecological landscapes and reinforces the need for integrated One Health surveillance to identify and contain emerging strains before they achieve broader mammalian adaptation or sustained transmission.

Day 1	Plenary Session 1
10:15	Innovations in Cohort Studies for Respiratory Virus Response
Speaker	Emily Martin, University of Michigan, USA

Day 1	Plenary Session 2
11:15	Repeated influenza vaccination effects in a randomised placebo- controlled trial
Speaker	Ben Cowling, Hong Kong University, Hong Kong SAR

Author

Ben Cowling¹

Affiliations:

1. World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China

Abstract

Antibody responses to influenza vaccination vary between people and in the same person over time. In observational studies, prior vaccination is associated with some of this variation: antibody responses often seem hampered in repeat vaccinees compared with those not recently vaccinated. It is unclear how much this effect arises from confounders or reflects a true blunting of responses by pre-existing antibodies. It is also unclear how much responses vary among people with similar vaccination histories and pre-vaccination antibody titers – and whether each person responds consistently to different vaccine components or to the same component in different years. To answer these questions, we established the DRIVE-I study, a randomized, placebo-controlled trial of repeated influenza vaccination in healthy adults 18-49 years old in Hong Kong. We analyzed hemagglutination inhibition (HAI) and neutralization titers (FRNT) at 0, 30 and 182 days after vaccination. We found that vaccine-induced antibody boosts were smaller in people with higher pre-vaccination titers, but prior vaccination reduced the boost beyond this "antibody ceiling" effect: for the same pre-vaccination titer, each prior vaccination reduced peak post-vaccination titers to some vaccine strains by up to 1.7 log₂ units (95% CrI 1.5-2.0), contributing to higher titers in non-repeat compared with repeat vaccinees for up to a year after vaccination. These results show that prior vaccination is associated with reduced vaccine responses (and post-vaccination titers for some strains in some years) after accounting for differences in pre-vaccination titers between repeat vaccinees and first-time vaccinees.

Day 1	Plenary Session 2
11:40	Evolving Applications of Serology: From tracking SARS-CoV-2 exposure to exploring post-pandemic immunity gaps in Aotearoa New Zealand
Speaker	Nikki Moreland, Auckland Uni., Auckland, NZ

Authors

Nikki Moreland¹, Reuben McGregor¹, Natalie Lorenz¹, Lauren Carlton¹, Alex James², Michael Baker³, Richard Charlewood⁴

Affiliations

¹Maurice Wilkins Centre and the School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand, ² Te Pūnaha Matatini and School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand, ³Department of Public Health, University of Otago, Wellington, New Zealand, ⁴New Zealand Blood Service, Auckland, New Zealand

Abstract

New Zealand (NZ) followed an elimination strategy during the COVID-19 pandemic, avoiding major health impacts of SARS-CoV-2 with stringent border controls, intermittent lock-downs and other non-pharmaceutical interventions. Immunological enquiry complemented these efforts including our development of sensitive and specific serological assays to detect Sars-Cov-2 antibodies. These assays enabled estimation of past infections, including asymptomatic and undiagnosed cases, and contributed to NZ's science-led response. A nationwide serosurvey of nearly 10,000 donors in late 2020 revealed an exceptionally low seroprevalence (0.103%), confirming minimal community transmission and validating the success of the elimination strategy. Building on this foundation we have since applied these assays to investigate antibody half-life, vaccine induced responses in both NZ and Fiji and most recently to post-pandemic immune dynamics and shifts in susceptibility to respiratory pathogens. Following the easing of restrictions, notable surges in infections such as respiratory syncytial virus (RSV) and Group A *Streptococcus* have been observed. Ongoing work is examining how waning immunity and "immunity gaps" caused by reduced exposure during the pandemic may have contributed to these trends. This illustrates how serological surveillance can evolve from pandemic response to broader population-level monitoring and provide insights for preparedness of future respiratory disease threats.

Day 1	Plenary Session 2
12:00	COVID-19 vaccine effectiveness and impact on mortality in Australia
Speaker	Bette Liu, NCIRS, Sydney, NSW

Authors

Bette Liu ¹

Abstract

As the severe acute respiratory coronavirus 2 (SARS-CoV-2) evolves, monitoring of COVID-19 vaccine effectiveness and vaccine impact on disease-specific outcomes is needed to inform public health decision-making. This presentation will outline monitoring of COVID-19 vaccine effectiveness against COVID-19 mortality in the whole Australian population aged 65+ years since 2022, including recent estimates of the effectiveness of the JN.1 COVID-19 vaccine and the changing impact of vaccination.

Day 1	Plenary Session 2
12:20	The Victorian RSV Program Journey: Lessons from Early Implementation
Speaker	Shidan Tosif, RCH, MCRI, Melbourne

Authors

Shidan Tosif^{1,2,3}, Alissa McMinn1, Nigel Crawford^{1,2,3}

Affiliations

- 1. SAEFVIC, Infection and Immunity, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- 2. Department of Immunisation, Royal Childrens Hospital Melbourne, Parkville, Victoria, Australia
- 3. Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia

Abstract

Respiratory syncytial virus (RSV) remains one of the leading causes of hospitalisation in infants and young children. With the recent availability of long-acting monoclonal antibodies and maternal vaccines, Australia is entering a new era of RSV prevention. This presentation outlines Victoria's approach to implementing RSV program and will highlight the lessons learned from initial rollout phases.

Day 1	Plenary Session 2
12:40	RSV Maternal Vaccination: the UK Experience
Speaker	Thomas Williams, University of Edinburgh, Scotland

Authors

Thomas Williams¹

Affiliations

1. Department of Child Life and Health, University of Edinburgh, United Kingdom. [thomas.christie.williams@ed.ac.uk]

Abstract

In August/September 2024, the United Kingdom rolled out universal maternal vaccination for respiratory syncytial virus (RSVpreF), with all pregnant women at 28 weeks or more of gestation eligible. At the same time, we launched the BronchStop study, a multicentre, test-negative, case-control study to analyse the vaccine effectiveness of maternal RSVpreF vaccination against the primary outcome of hospitalisation for RSV-associated acute lower respiratory infection (ALRI) in infants. Included patients were infants with ALRI born after Aug 12, 2024 (Scotland), and Sept 1, 2024 (England), and therefore had mothers eligible for maternal vaccination, who were admitted to 30 hospital sites across the UK from Sept 30, 2024, to Jan 20, 2025, and tested for RSV. Infants were followed up until hospital discharge or death as an inpatient. Primary vaccine effectiveness of maternal RSVpreF vaccination against RSV-associated hospitalisation was calculated with the use of a conditional logistic regression adjusted by site, calendar month of hospital attendance for the infant, age, preterm birth, and sex. We included 537 mother-infant pairs in our analysis, in whom there were 391 RSV-positive infant cases (median age 1.63 months [IQR 0.94-2.26]) and 146 RSV-negative infant controls (1·41 months [0·77–2·03]). We found that the adjusted effectiveness of maternal RSVpreF vaccination for preventing infant hospitalisation was 58% (95% CI 28-75) for infants whose mothers were vaccinated at any time before delivery and 72% (48-85) for infants whose mothers were vaccinated more than 14 days before delivery (39 [11%] of 357 RSV-positive cases vs 43 [33%] of 129 RSV-negative controls). In my talk I will describe the conduct of the study, future plans for the BronchStop Collaboration, and challenges to increasing the uptake of maternal RSVpreF in a UK setting.

Day 1	Plenary Session 3
13:45	Inferring effects of mutations on SARS-CoV-2 transmission from genomic surveillance data
Speaker	Ahmed Quadeer, University of Melbourne DMI

Authors

Brian Lee^{1,*}, Ahmed Abdul Quadeer^{3,4}, Muhammad Saqib Sohail², Elizabeth Finney¹, Syed Faraz Ahmed^{2,3}, Matthew R. McKay^{3,4}, and John P. Barton^{1,5,6}

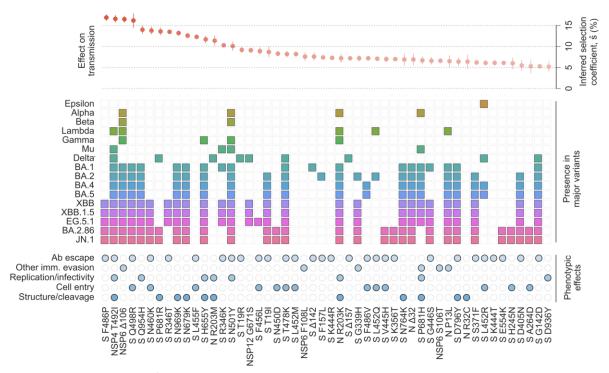
Affiliations

¹Department of Physics and Astronomy, University of California, Riverside, USA.

Abstract

New and more transmissible variants of SARS-CoV-2 have arisen multiple times over the course of the pandemic. Rapidly identifying mutations that affect transmission could facilitate outbreak control efforts and highlight new variants that warrant further study. Here [1], we develop an analytical path integral model that infers the transmission effects of mutations from genomic surveillance data. Applying our model to SARS-CoV-2 data across many regions, we find multiple mutations that substantially affect the transmission rate, both within and outside the Spike protein. The strongly selected mutations we infer for SARS-CoV-2 are supported by experimental evidence regarding their effects on neutralizing antibody escape, T cell/immune evasion, replication/infectivity, cell entry, and structure/cleavage (Figure 1). Importantly, our model detects lineages with increased transmission even at low frequencies. As an example, we infer significant transmission advantages for the Alpha, Delta, and Omicron variants shortly after their appearances in regional data, when their local frequencies were only around 1-2%. Our model thus facilitates the rapid identification of variants and mutations that affect transmission from genomic surveillance data.

²Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.


³Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia.

⁴Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.

⁵Department of Physics and Astronomy, University of Pittsburgh, USA.

⁶Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA.

^{*}Passed away on July 6, 2025

Figure 1: Top 50 mutations/deletions inferred to increase SARS-CoV-2 transmission the most. The top panel shows their inferred selection coefficients, the middle panel shows the major variants in which they are observed, and the bottom panel shows their phenotypic effects reported in the literature.

[1] Lee, B. et al. Inferring effects of mutations on SARS-CoV-2 transmission from genomic surveillance data. *Nature Communications* 16, 441 (2025).

Day 1	Plenary Session 3
14:00	Development of a novel long-acting pan-antiviral to influenza
Speaker	Saira Hussain, WHOCC Doherty Institute, Melbourne

Authors

Saira Hussain^{1,2}, Charley McKenzie Kludas², Ashwin Muraleetharan¹, Paul Jones³, Wen-Yang Wu³, Francesca Mercuri², Betty Jin³, Peter Jenkins³, Jennifer McKimm-Breschkin², Lorena Brown², Ian Barr^{1,2}, Kanta Subbarao²

Affiliations

- ¹ WHO Collaborating Centre for Reference and Research on Influenza, Melbourne VIC, Australia
- ²Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne VIC, Australia
- ³ AusBio Ltd. Melbourne VIC, Australia

Abstract

Antiviral drugs can be used as first-line countermeasures against emerging pandemic influenza strains while vaccine development is underway. Widespread reduced susceptibility to licensed antivirals such as oseltamivir and the adamantanes has previously occurred, highlighting the need to develop novel drugs. We tested a new compound MD-X from Aus Bio Ltd, which has a modular structure and a dual mode of action. This compound possesses an effector domain that creates an acidic microenvironment mimicking the low pH found inside the endosome. This domain induces an irreversible pH dependent conformational change in the haemagglutinin and prevents attachment of the virus. The acidic effector domain has been linked to a zanamivir anchoring domain to facilitate attachment to virions via the neuraminidase (NA). The anchor not only provides proximity for the effector domain, but also suppresses the enzymatic activity of the NA that prevents spread of progeny virions, like a traditional NA inhibitor (NAI). The compound showed efficacy in the low nanomolar (nM) range *in vitro* against different types and subtypes of influenza viruses (seasonal influenza A(H1N1)pdm09, A(H3N2), B/Victoria-lineage, swine A(H3N2)v, low and high pathogenicity avian influenzas A(H3N8) and A(H5N1), respectively, and also against viruses showing reduced susceptibility to current drugs, oseltamivir and baloxavir. *In vitro*, the compound showed superior inhibition when compared to oseltamivir and zanamivir. Mice infected with a lethal challenge were completely protected from mortality and clinical signs, except some weight loss, when the compound was administered 25 days before or 48 hours after infection. MD-X

shows promise as an effective influenza antiviral for prophylaxis after a single dose and could fill a gap in our pandemic response.

Day 1	Plenary Session 3
14:15	Analysis of H5NX Avian influenza diffusion, evolution and recombination in South-East Asia
Speaker	Callum Lay, ACDP, CSIRO, Geelong

Authors

Callum Le Lay¹, Edna Felipe, Vicky Stevens¹, Pat Mileto¹, Kelly Davies¹, Ivano Broz¹, Matthew Neave¹, Frank Wong¹ **Affiliations**

- 1. International Program. Australian Centre for Disease Preparedness, Victoria, Australia
- 2. Bureau of Animal Industry, Philippines

Abstract

We analyzed 504 gene segment sequences of highly pathogenic avian influenza (HPAI) H5NX viruses collected in the Philippines through outbreak investigations and active surveillance between 2017 and 2023. Ninety complete hemagglutinin (HA) genomes were included in the primary dataset, of which 64 also contained neuraminidase (NA) segments and 33 were complete across all eight gene segments. Phylogenetic analysis revealed two distinct epidemic waves: the first caused by clade 2.3.4.4e (H5N6) circulating locally from 2017 to 2021, and the second by clade 2.3.4.4b (H5N1) comprising two outbreak clusters detected during 2022–2023.

The 2.3.4.4e lineage persisted with a largely stable genome constellation, except for a 2020 sub-clade that acquired divergent polymerase complex and matrix segments. Subsequent 2.3.4.4b viruses retained conserved internal gene constellations, showing limited reassortment and no direct exchange with the earlier endemic 2.3.4.4e lineage.

This study expands the available genomic data for the Philippines more than fifteenfold and highlights the country's role as a regional interface for avian influenza transmission. The results provide a foundation for improved genomic surveillance, reassortment tracking, and regional risk assessment of HPAI in Southeast Asia.

Day 1	Plenary Session 3
14:30	Antigenic evolution of the influenza B virus hemagglutinin over 81 years
Speaker	Lara Schwab, University of Melbourne

Authors

Lara Schwab¹, Ruopeng Xie^{2,3}, Ellie Reilly¹, Malet Aban⁴, Shu Hu^{2,3}, Natalie Spirason⁴, Yi-Mo Deng⁴, Randy Suryadinata^{5,6}, Matthew Gartner¹, Kanta Subbarao^{1,4}, Karen Laurie⁷, Steve Rockman⁷, Stephen Kent^{1,8}, Adam Wheatley¹, Ian Barr⁴, Vijaykrishna Dhanasekaran^{2,3}, Marios Koutsakos¹

Affiliations

- 1. Department of Microbiology and Immunology, University of Melbourne, Doherty Institute, Australia
- 2. School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- 3. HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- 4. WHO Collaborating Centre for Reference and Research on Influenza, Doherty Institute, Australia
- 5. Department of Respiratory Medicine, Royal Children's Hospital, Parkville, Australia
- 6. Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
- 7. Segirus Ltd, Parkville, Victoria, Australia
- 8. Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia

Abstract

Background: Influenza B viruses (IBV) were first identified in humans over 80 years ago and contribute to seasonal epidemic outbreaks. Although IBV evolves at a lower rate than Influenza A virus (IAV), antigenic changes in IBV haemagglutinin (HA) constantly accumulate, resulting in the need for annual vaccine updates. The evolutionary processes that drive IBV HA mutations are not fully resolved.

Methods: We applied antigenic cartography using haemagglutination inhibition (HAI) data from 50 ferret antisera and 253 IBV isolates (1940-2021) and integrated it with phylogenetic analyses of >400 IBV HA sequences. Pairing antigenic and amino acid sequence data, we identified antigenic cluster-defining mutations in the HA. We evaluated the fitness effects of cluster-defining mutations in air-liquid-interface (ALI) human airway cell cultures from the upper and lower respiratory tract. We also evaluated how population immunity influences IBV HA mutations, by performing HAI assays of human sera against IBV mutants with cluster defining mutations.

Results: We found that IBV HA followed a continuous genetic diversification which was accompanied by punctuated antigenic changes, resulting in appearance of 13 antigenic clusters over the last 81 years. These clusters did not follow a linear path in antigenic space, and were mainly driven by <10 positions near the receptor binding (136, 150, 162-167 and 203). These residues formed complex epistatic networks and re-appeared during 81 years of viral evolution, highlighting the impact of mutation recycling. Several mutations generated a permissive backbone via epistatic interactions on which immune escape emerged without a replicative fitness cost.

Conclusion: We deciphered the molecular basis of IBV antigenic evolution and identified important similarities and differences with that of A/H3N2. Our work will help to predict the emergence of new antigenic variants and will inform on future vaccine designs.

Day 1	Plenary Session 3
14:45	Antigenic characterisation of Australian H7 highly pathogenic avian influenza virus under immunological pressure
Speaker	Maddy Belfrage, ACDP, CSIRO, Geelong

Authors

Madeline Belfrage¹, Vicky Stevens¹, Frank Y. K. Wong¹ and Jasmina M. Luczo¹

Affiliations

¹CSIRO, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia

Abstract

H7 high pathogenicity avian influenza viruses (HPAIVs) pose a significant threat to avian health. H7 HPAIV outbreaks have severely impacted the Australian poultry industry and have resulted in significant socioeconomic losses, as exemplified by the 2024 and 2025 H7 HPAIV outbreaks.

Avian influenza viruses (AIV) evolve antigenically to evade the host immune response. Antigenic drift describes the accumulation of substitutions in antigenic epitopes that result in immune escape. The AIV surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA) are the primary targets of the host immune response and antigenic drift is monitored to inform the evolution of AIV lineages.

In this study, we characterised the antigenic drift of A/chicken/NSW/2012 H7N7 HPAIV HA and NA under immunological pressure. H7N7 HPAIV was incubated with increasing concentrations of homologous chicken polyclonal antisera or naïve chicken serum before passaging in embryonated chicken eggs. Viral genetic diversity was monitored by next generation sequencing to determine changes in regions encoding antigenic epitopes followed by antigenic characterisation to understand the impact of these changes.

Sequencing revealed that the immune escape virus had substitutions in antigenic sites A, B and D of the HA glycoprotein and substitutions in variable segments I and VII of the NA glycoprotein. The antigenic characteristics of the parental and immune escape viruses were compared using hemagglutinin inhibition assay. A loss in haemagglutination inhibition titre was observed for the immune escape virus, suggesting that the immune escape virus had evolved to evade inhibition by homologous antisera more effectively than the parental virus. Given the continued threat H7 viruses pose to Australia's poultry industry, this data informs the antigenic architecture of Australian H7 AlVs, the development of vaccines, and helps us forecast the antigenic drift of H7 AlVs.

Day 1	Plenary Session 3
15:00	Novel methods to rapidly perform genomic epidemiology on a broad spectrum of respiratory pathogens
Speaker	Rebecca Rockett, Westmead Hospital, Sydney

Authors

Rebecca J Rockett^{1,2}, Tanya Golubchik^{1,2} Kingsley King-Gee Tam^{1,2}, Winkie Fong^{1,2}, Carl J E Suster^{1,2}, Kerri Basile^{1,2,3}, Vitali Sintchenko^{1,2,3}, and Jen Kok^{1,2,3}

Affiliations

- 1. Centre for Infectious Diseases and Microbiology Public Health, Westmead Hospital, Westmead, New South Wales, 2145, Australia
- 2. Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
- 3. Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales 2145, Australia Abstract

The ability to rapidly sequence the genomes of respiratory pathogens has revolutionised molecular epidemiology—enhancing our understanding of disease transmission, pathogen evolution, antimicrobial resistance, and potential reductions in vaccine effectiveness. However, sequencing protocols often vary between organisms, frequently requiring pathogen-specific culture or whole genome amplification. These laboratory complexities limit the rapid application of genomics across the wide array of respiratory pathogens, especially during surges in viruses such as respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and coronavirus disease 2019 (COVID-19), as well as bacterial pathogens like *Bordetella pertussis*, *Mycoplasma pneumoniae*, and *Chlamydia pneumoniae*.

One proposed solution is the use of hybridisation-based approaches to enrich nucleic acids from target genomes using biotinylated probes that tile across the genomes of interest. These probe-based techniques have long been used in human genomics to selectively sequence genes associated with tumourigenesis and resistance to cancer therapies. Hybridisation offers several advantages over amplification-based methods: probes require less homology with the target sequence and do not interact with each other, enabling simultaneous capture of millions of bases.

In this study, we demonstrate the utility of capture-based methodologies to streamline genomic workflows and enable rapid genomic epidemiology for Influenza, COVID-19, hMPV, *B. pertussis*, and *M. pneumoniae*, while also highlighting implementation challenges and innovations.

We utilised both commercial and custom hybridisation panels to conduct genomic epidemiology studies following surges in Influenza A (n=180, 2022), hMPV (n=120, 2024), *B. pertussis* (n=255, 2024), and *M. pneumoniae* (n=322, 2024). Whole genome recovery rates were 75% (117/157), 90% (108/120), 61% (146/241), and 39% (124/322), respectively, from specimens confirmed positive by PCR. Recovery correlated with pathogen load, with whole genome recovery from specimens with PCR cycle threshold (Ct) values <25 reaching 90% (103/114), 93% (70/75), 69% (116/169), and 62% (78/126), enabling laboratories to better target sequencing efforts.

Additional predictors of genome recovery were identified, particularly for bacterial pathogens, including nucleic acid extraction purity and challenges in balancing capture pools to prevent high-load samples from dominating sequencing outputs. Despite these barriers, hybridisation-based techniques successfully identified mutations conferring antimicrobial resistance, with high concordance to phenotypic susceptibility and PCR-based detection. Furthermore, these methods enabled phylogenomic analyses, including genotyping, quantification of viral reassortment, and codetection.

This presentation will demonstrate how hybridisation-based capture methods can expand the use of genomics for a broader range of respiratory pathogens, supporting both technical innovation and public health response.

Day 1	Plenary Session 4
15:45	National summary of the 2025 respiratory season and the Australian Respiratory Surveillance Report
Speaker	Jenna Hassall & Lauren Kutzner, Australian Centre for Disease Control, Canberra

Authors

Jenna Hassall¹, Lauren Kutzner¹, Caitlin Trenorden¹, Siobhan St George¹

Affiliations

1. Viral Respiratory Diseases Epidemiology and Surveillance Section, interim Australian Centre for Disease Control, Australian Government Department of Health, Disability and Ageing

Abstract

The Australian Respiratory Surveillance Report draws on data from 9 surveillance systems, 5 sentinel laboratories and 2 national registers to describe acute respiratory infection trends in Australia. Using these data, we present a national summary of COVID-19, influenza and respiratory syncytial virus (RSV) in 2025 to date.

Community helpline calls for influenza-like illness (ILI) were consistent with historical trends until June, when ILI call rates exceeded those at the same time in 2023–2024. In contrast, self-reported fever and cough symptoms among community survey participants remained largely consistent with historical trends. In 2025, COVID-19 notifications declined about 32% from 2024. The winter peak occurred in June, consistent with 2024 and 2023. COVID-19 notification rates were highest in adults aged 70 years and over, and notification trends were similar across jurisdictions. Influenza notifications rose 18% from 2024, driven by elevated interseasonal activity, a prolonged June–August peak and slower decline in notifications than prior seasons. Influenza notification rates were highest in children aged 0–14 years, with all jurisdictions experiencing high notification rates from June–August, despite variation at other times. There has been a higher proportion of influenza B notifications this season than in 2024, particularly among children aged 5–19 years. In 2025, RSV notifications have been comparable to 2024 but higher than 2023. RSV notifications peaked in July, two months later than previous years, though trends were notably different across jurisdictions. RSV notification rates were highest in children aged 0–4, but there were 32% fewer notifications in those aged under 8 months than in 2024 and 27% fewer than in 2023, which may indicate impact of the national vaccination program.

At sentinel general practice sites, ILI consultations mirrored influenza notification trends, and the most commonly detected respiratory pathogens in those tested were rhinovirus and influenza. At sentinel hospitals, severe acute respiratory infection (SARI) admissions peaked across June and July, driven by a high number of influenza admissions during winter. Despite increased SARI admissions in 2025, the proportion admissions who died was not different from 2024

At sentinel laboratories, SARS-CoV-2 positivity peaked in January with a smaller second peak in June, as in 2024. The SARS-CoV-2 recombinant lineage XEC dominated in early 2025, then shifted to NB.1.8.1. Influenza positivity peaked in July and declined more steeply than influenza notifications. Most influenza A(H1N1) and B/Victoria lineage isolates tested matched 2025 vaccine components; however, only 80% of A(H3N2) isolates were antigenically similar. RSV positivity peaked in August 2025, later than in notifications this season and in 2024.

Death registrations indicate COVID-19 remains the leading cause of respiratory infection deaths (2023–2025). Between January–July deaths involving COVID-19 (both due to and with) were lower than 2023–2024, deaths involving influenza were higher, and deaths involving RSV lower than 2024. Immunisation data shows COVID-19 vaccine coverage fell to 11%, while influenza vaccine coverage was 31%, both lower than in previous years. Over 130,000 maternal Abrysvo doses have been administered and nirsevimab uptake reached 20% among infants. Overall, the 2025 respiratory season has had a moderate to high impact on the community and health care services, highlighting the need for improved vaccine uptake and continuous improvement of surveillance and reporting, including the Australian Respiratory Surveillance Report, to guide interventions.

Day 1	Plenary Session 4
16:05	Real-time situational assessment of respiratory virus epidemics in Australia and New Zealand over winter 2025
Speaker	Oliver Eales, University of Melbourne

Abstract

Case time-series — which are used to monitor epidemic activity — often exhibit substantial noise, and day-of-the-week effects that can limit visual interpretation of trends in the data. Statistical methods can quantify and account for different sources of noise, allowing meaningful trends in case time series (and their uncertainty) to be inferred and future trends to be predicted. From 16 May–3 October 2025 the Australia—Aotearoa Consortium for Epidemic Forecasting and Analytics (ACEFA), produced weekly situational assessments of respiratory virus activity across all eight Australian states and territories and New Zealand. This was the first year of nationwide reporting, following a pilot Situational Assessment Program in Victoria over winter 2024.

Weekly analyses were performed on case time series for SARS-CoV-2, RSV and influenza. Past and current trends — including real-time estimates of the growth rate, reproduction number, and doubling/halving times — were inferred for each pathogen using a statistical model. For influenza, type/subtype data were incorporated where available, using a statistical model that accounts for the distinct dynamics of influenza subtypes, to simultaneously infer trends for each influenza subtype. Multiple forecasting teams developed and used models to predict the short-term future trends in cases. Each team's forecasts were combined into an ensemble forecast that was included in weekly reports. In this presentation I will provide an overview of ACEFA's 2025 Situational Assessment Program and plans for future seasons.

Day 1	Roundtable discussion
16:30	Should we focus on ameliorating the big 3 (seasonal influenza, RSV, SARS-CoV-2) instead of worrying about the next pandemic now that we have mRNA,?
Panel	 Andy Bowman David Speers Emily Martin Erik Karlsson Michelle Wille Nikki Moreland

Day 2	Plenary Session 5
8:30	Options for co-administration of the ASO1E-adjuvanted respiratory syncytial virus (RSV) prefusion F protein (adjuvanted RSVPreF3) vaccine with other adult vaccines: a review of existing data
Speaker	Upasna Varma, GSK, Melbourne

Presented by: Upasna Varma

Authors

Nicolas Lecrenier¹, Frithjof Kosfeld¹, Kayhan Binazir², Paulia Kwo Ton Ge Jua¹, Hiwot Amare Hailemariam¹, Amulya Jayadev³, Vicky Cárdenas⁴

Affiliations

1 GSK, Wavre, Belgium 2 GSK, London, United Kingdom 3 GSK, Bangalore, India 4 GSK, Rockville, MD, United States Abstract

Background: RSV disease in adults has been identified as a significant health concern. The adjuvanted RSVPreF3 vaccine is approved for the prevention of RSV-related lower respiratory tract disease (RSV-LRTD) in ≥60-year-olds in >65 countries and for 50–59-year-olds at increased risk for RSV-LRTD in most of these countries. Co-administration of vaccines allows immunisation against several diseases at a single healthcare provider (HCP) visit, with better management of healthcare resources as well as improved vaccine uptake. This review aims to consolidate available clinical data and national recommendations on co-administration of adjuvanted RSVPreF3 vaccine with other vaccines, providing an overview of immunogenicity, reactogenicity, and safety.

Methods: Co-administration of the adjuvanted RSVPreF3 vaccine with other adult vaccines was identified in 6 clinical trials (Table). At National recommendations on co-administration of the adjuvanted RSVPreF3 vaccine with other routine vaccines were obtained from relevant national recommendation websites/publications.

Results: In total, 4,599 participants, including 2,299 who received co-administered vaccines, were vaccinated across the 5 completed trials (Table).¹⁻⁵ Immune responses against RSV-A, RSV-B, and 27 antigens from 5 vaccines were non-inferior or without clinically relevant interference when the vaccines were coadministered versus sequential administration (SA).¹⁻⁵ No clinically meaningful differences in solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs or potential immune-mediated diseases were observed between co-administration and SA. The most common solicited local and systemic AEs were injection-site pain and myalgia/fatigue. Different national recommendations are currently in place, from no co-administration to co-administration with selected vaccines or with any other adult vaccines.

Conclusions: In most cases, the immunogenicity of the co-administered antigens was preserved, with a clinically acceptable safety profile, supporting the co-administration of the adjuvanted RSVPreF3 vaccine with other adult vaccines, which is recognised by several national recommendations. This review provides a summary of data supporting HCPs in their recommendation to routinely co-administer the adjuvanted RSVPreF3 vaccine with other currently licensed adult vaccines, which can enhance vaccination coverage and reduce healthcare resource use. **Acknowledgements** Funding: GSK. Encore abstract from ESCMID Vaccines 2025

Table: Description of the 6 identified clinical trials on co-administration of the adjuvanted RSVPreF3 vaccine

Clinical trial	Co-administered vaccines	N participants	Age	Reference	
Phase 3 open- label, multi- country study NCT04841577	Adjuvanted RSVPreF3 vaccine FLU-QIV	Co-ad: 442 Control: 443	≥60 YOA	 Chandler R, et al. Clin Infect Dis 2024:ciad786 	
Phase 3 open- label, multi- country study NCT05586797	Adjuvanted RSVPreF3 vaccine FLU-aQV	Co-ad: 523 Control: 522	≥65 YOA	 Clark R, et al. Clin Infect Dis 2024;79:1088 –98 	
Phase 3 open- label study in the US NCT05559476	Adjuvanted RSVPreF3 vaccine FLU-qIV-HD	Co-ad: 516 Control: 513	≥65 YOA	3. Buynak R, et al. Infect Dis Ther 2024;13:1789 –1805	
Phase 3 open- label, multi- country study NCT05879107	Adjuvanted RSVPreF3 vaccine PCV-20	Co-ad: 553 Control: 557	≥60 YOA	4. Leroux-Roels I, et al. ESCMID	

					2025;PS073/0 7983
Phase 3 open- label, multi- country study NCT05966090	Adjuvanted RSVPreF3 vaccine RZV	Co-ad: 265 Control: 265	≥50 YOA	5.	Dennis P, et al. EuGMS 2024;LB35
Phase 3 open- label, multi- country study NCT06374394	Adjuvanted RSVPreF3 vaccine COVID-19 mRNA vaccine	Ongoing: data not published yet	≥50 YOA	6.	https://clinica ltrials.gov/stu dy/NCT06374 394

FLU-QIV, seasonal quadrivalent influenza vaccine; **FLU-aQIV**, adjuvanted FLU-QIV; **FLU-QIV-HD**, high-dose FLU-QIV; **PCV-20**, 20-valent pneumococcal conjugate vaccine; **RZV**, adjuvanted recombinant zoster vaccine; **COVID-19 mRNA**, COVID-19 messenger ribonucleic acid; **YOA**, years of age

Day 2	Plenary Session 5
8:50	The Molecular Clamp Platform: A broadly applicable solution to the manufacture of multipathogen subunit vaccines
Speaker	Keith Chappel, University of Queensland

Abstract

Background: Respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and parainfluenza virus 3 (PIV3) are medically important causes of respiratory tract infections. Combined these three viruses cause more severe disease and hospitalisations than influenza viruses. After more than 5 decades of unsuccessful research and development, vaccines have recently been approved for the prevention of lower respiratory tract disease caused by RSV, however vaccines for hMPV and PIV3 remain in early-stage development.

Objective: Vicebio seeks to develop easy to administer multi-pathogen vaccines to protect against respiratory viruses. **Methods:** The second-generation molecular clamp platform, facilitates production of pre-fusion stabilized glycoproteins for RSV, hMPV and PIV3, and a diverse array of fusion glycoproteins from other viral families. The bivalent vaccine against RSV and hMPV (VXB-241) entered a phase I clinical trial in Q3 2024, with an interim readout planned for Q2 2025. The trivalent vaccine including RSV, hMPV and PIV3 (VXB-251), is on track to enter a phase I clinical trial in Q4 2025.

Results: Lead candidate subunit vaccines for RSV, hMPV and PIV3, have completed pre-clinical development and demonstrated all of which have demonstrated, high yield production using a universal manufacturing process and have shown to be highly stable in liquid formulation at 2-8°C. Head-to-head evaluation in mouse immunogenicity studies has demonstrated molecular clamp stabilised antigens are able to elicit a neutralising immune response that was superior or equivalent to the best-in-class comparator antigens for either RSV, hMPV and PIV3.

Conclusion: Vicebio's proprietary molecular clamp platform streamlines the production of multi-pathogen vaccines in ready-to-use, liquid-stable formulations, and thereby simplify administration while providing reliable protection against respiratory

Day 2	Plenary Session 5
9:10	Live Attenuated Influenza Vaccine: Southern Hemisphere Nasal Spray Flu Vaccine for 2026
Speaker	Merrin Tulloch, AstraZeneca, Australia

Authors

Merrin Tulloch1

Affiliations

1. AstraZeneca, 66 Talavera Road, Macquarie Park NSW 2113

Abstract

The Live Attenuated Influenza Vaccine is an intranasal needle free influenza vaccine. It has been available in the northern hemisphere since 2003, and will be supplied in the southern hemisphere for the first time in 2026. This presentation will discuss the composition, administration and immune responses to LAIV; safety profile; overseas experiences including vaccine effectiveness; and planned introduction to Australia next year.

Day 2	Plenary Session 5
9:30	Combination COVID-19 and Influenza Vaccines: Development Landscape and Potential Public Health Implications
Speaker	Najwa Ejje, Sanofi Australia

Authors

Najwa Ejje¹, Joshua Nealon²

Affiliations

- 1. Medical Lead for Influenza and COVID, Sanofi Vaccines Australia, Sanofi.
- 2. Global Medical Brand Lead Covid-19 & mRNA Flu, Sanofi Vaccines, Sanofi.

Abstract

The convergence of COVID-19 and influenza presents unique challenges to global public health systems. This presentation explores the development of combination vaccines targeting both pathogens simultaneously, addressing the overlapping seasonality patterns and cumulative disease burden.

Sanofi's approach to combination vaccine combines established high-dose or recombinant influenza vaccines (Fluzone HD, Flublok) with a recombinant spike protein COVID-19 vaccine adjuvanted with Matrix-M. This strategy leverages proven platforms with evidence of improved protection versus standard-of-care influenza vaccines while addressing COVID-19 vaccine hesitancy through a profile designed to minimize side effects.

Current strain selection processes differ substantially between influenza and COVID-19. For combination vaccines, alignment of strain selection timing becomes critical, as delays in influenza strain selection beyond February could impact vaccine manufacturing timelines, potentially reducing vaccine availability and coverage.

Respiratory virus epidemiology continues to evolve, and the public health value of combinations likely derives from improved vaccination coverage rates and reduced barriers to vaccination. Rational, science-based decisions around strain selection processes are critical as combination respiratory vaccines advance through development. Broader discussions of their impact including on cardiovascular and other non-respiratory outcomes may be warranted, building on established evidence for influenza vaccination.

Day 2	Plenary Session 5
9:50	The ABC of Flu Vaccines: Consideration for Innovation and Public Health
Speaker	Jules Bayliss Sequris

Day 2	Plenary Session 5
10:10	DAN-RSV: RSVpreF Vaccine for preventing cardiorespiratory hospitalisation
Speaker	Tor Beiring -Sorensen University of Copenhagen

Authors

M.C.H. Lassen,^{1,2} N.D. Johansen,^{1,2} S.H. Christensen,^{1,2} N. Aliabadi,³ K.G. Skaarup,^{1,2} D. Modin,^{1,2} B.L. Claggett,⁴ C.S. Larsen,^{5,6} L. Larsen⁷ L. Wiese,⁸ M. Dalager-Pedersen,^{9,10} M.G. Lindholm,¹¹ A.M.R. Jensen,^{1,2} M. Dons,^{1,2} K.F. Bernholm,^{1,2} F.S. Davidovski,^{1,2} L.S. Duus,^{1,2} C.I. Ottosen,^{1,2} A.B. Nielsen,^{1,2} J.H. Borchsenius,^{1,2} C. Espersen,^{1,2} G. Köse,^{1,2} F.H. Fussing,^{1,2} L. Køber,^{1,2,13} S.D. Solomon,⁴ J.U.S. Jensen,^{12,14} C.J.-M. Martel,¹⁵ B.D. Gessner,³ C. Schwarz,³ E. Gonzalez,³ M. Skovdal,³ L.H. Moulton,¹⁶ P. Zhang,³ E. Begier,³ and T. Biering-Sørensen^{1,2,13,17}

Affiliations

1Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen; 2Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen; 3Pfizer, New York; 4Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston; 5Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; 6Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; 7Research Unit for Infectious Diseases, Odense University Hospital, Odense, Denmark; 8Department of Infectious Diseases, Zealand University Hospital, Roskilde, Denmark; 9Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark; 10Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark; 11Department of Cardiology, Zealand University Hospital Roskilde, Roskilde, Denmark; 12Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen,

Copenhagen; 13Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen; 14Respiratory Medicine Section, Department of Medicine, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen; 15Statens Serum Institut, Copenhagen; 16Pfizer Canada, Kirkland, QC; 17Steno Diabetes Center Copenhagen, Copenhagen.

Abstract

Background: Respiratory syncytial virus (RSV) can cause serious illness in older adults. The bivalent RSV prefusion F protein-based vaccine (RSVpreF) has been shown to prevent RSV-associated respiratory illness, but data from randomized trials with regard to its effect on outcomes involving hospitalization are limited. Methods: In this pragmatic, open-label trial with individual randomization, participants who were 60 years of age or older were assigned in a 1:1 ratio to receive the RSVpreF vaccine (the RSVpreF group) or no vaccine (the control group) during the 2024-2025 winter season. Baseline and outcome data were collected with the use of national registries. The primary end point was hospitalization for RSV-related respiratory tract disease. Secondary end points included hospitalization for RSV-related lower respiratory tract disease and hospitalization for respiratory tract disease from any cause. The prespecified criterion for success for the primary end point and RSV-related secondary end points was a minimum vaccine effectiveness of greater than 20%. Results: Of 131,379 participants who underwent randomization, 131,276 were included in the intention-to-treat population. During follow-up, hospitalization for RSV-related respiratory tract disease occurred in 3 of 65,642 participants in the RSVpreF group and in 18 of 65,634 participants in the control group (0.11 events vs. 0.66 events per 1000 participant-years; vaccine effectiveness, 83.3%; 95% confidence interval [CI], 42.9 to 96.9; P=0.007 for minimum effectiveness of >20%). The RSVpreF group also had fewer hospitalizations for RSV-related lower respiratory tract disease than the control group (1 vs. 12; vaccine effectiveness, 91.7%; 95% CI, 43.7 to 99.8; P=0.009 for minimum effectiveness of >20%), as well as fewer hospitalizations for respiratory tract disease from any cause (284 vs. 335; vaccine effectiveness, 15.2%; 95% Cl, 0.5 to 27.9; P=0.04 for vaccine effectiveness of >0%). The incidence of serious adverse events was similar in the two groups. Conclusions: Among adults 60 years of age or older, the RSVpreF vaccine reduced the incidence of hospitalization for RSV-related respiratory tract disease as compared with no vaccine. (Funded by Pfizer; European Union Clinical Trials number, 2024-516600-42-00; DAN-RSV ClinicalTrials.gov number, NCT06684743.). Disclosures: This study was supported by Pfizer.

Day 2	Plenary Session 6
11:00	Human metapneumovirus, the other respiratory paramyxovirus, incidence and genomic diversity during a pandemic era in Western Australia
Speaker	David Speers, Pathwest, WA

Authors

David Speers^{1,2,} Kritu Panta^{1,3}, Binit Lamichhane¹, Chisha Sikazwe^{1,3,} David Foley^{1,2,4}

Affiliations

- 1. Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- 2. School of Medicine, University of Western Australia, Crawley, Western Australia
- 3. Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia
- 4. Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth 6009, Australia

Abstract

In 2001, a previously unidentified paramyxovirus was found responsible for infections in children admitted to hospital with symptoms similar to those for respiratory syncytial virus (RSV). This agent was named human metapneumovirus (hMPV) to distinguish it from others in the Metapneumovirus genus of avian origin. hMPV is now recognized as a major cause of upper and lower respiratory infection.

Non-pharmaceutical interventions during the SARS-CoV-2 pandemic disrupted respiratory virus seasonality. We examined the seasonality and incidence of hMPV in Western Australia before, during and after the pandemic. Further to this, whole-genome sequencing of selected hMPV-positive samples was performed over this period using a tiled-amplicon approach to examine the influence of the pandemic interventions on hMPV diversity and the impact of the subsequent removal of these interventions.

There are several vaccine candidates for hMPV under development, including the use of attenuated strains, mRNA and vector-based platforms, and subunit vaccines, and there is the prospect for bivalent RSV/hMPV vaccines.

Understanding the genomic diversity, particularly within the immunodominant F protein, will be critical to antigen selection for optimal cross-neutralising antibody responses and thus the efficacy of these candidate vaccines.

Day 2	Plenary Session 6
11:20	Evolving Capacity and Challenges in Wastewater Surveillance for Respiratory Viruses
Speaker	Avram Levy, Pathwest, WA

Authors

Avram Levy

Affiliations

- Medical Scientist in Charge, Pathogen Genomics & Surveillance Unit, Microbiology, PathWest Laboratory Medicine WA
- 2. Adjunct Associate Professor, School of Biomedical Sciences, University of Western Australia.

Abstract

Wastewater surveillance was broadly adopted for respiratory viruses post-COVID, proving complementary to existing disease surveillance systems while adding powerful new population-level insights. Applications evolved from qualitative trend analyses to quantitative pathogen load estimates and viral characterisation for lineage distribution and source attribution. With the technology now proven and wastewater recognised as a uniquely representative sample type, opportunities exist for integrated, multi-pathogen surveillance systems that are cost-effective, scalable, and capable of supporting real-time health response across sectors. However, considerable technical, logistical, and interpretive challenges remain.

This talk will outline current capacity in wastewater-based surveillance with a focus on respiratory pathogens, highlighting lessons from implementation and considering strategies to address persistent bottlenecks. Emphasis will be placed on translating wastewater-derived data into actionable intelligence and on building sustainable systems to inform health risk decision-making

Day 2	Plenary Session 6
11:40	The first Australian Influenza Controlled Human Infection Study (CHIM): Immune Correlates of Viral Clearance and Symptoms
Speaker	Annette Fox, WHO CC, Melbourne, Victoria

Authors

Annette Fox^{1,2}#, Gail Cross³ #, A. Jessica Hadiprodjo^{1,2}, Leo Li Yang Lee⁴, Sammy Bedoui⁴, Sarah Londrigan⁴, Barbara Scher², Katie Milne¹, David Price², Michele Clarke⁴, Annabel Bachem⁴, Siddhartha Mahanty², Sharon Lewin², Julia Marshall^{2,3}, Ian Barr¹, James McCarthy^{2,3}, Kanta Subbarao⁴
equal first authors

Affiliations

- 1. WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- 2. Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- 3. Doherty Clinical Trials Incorporated, Melbourne, Australia
- 4. Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia)

Abstract

Correlates of protection are needed to advance vaccine development, particularly when efficacy trials are not feasible, such as for vaccines targeting future pandemic viruses. Controlled Human Infection Model (CHIM) studies are considered to be a valuable option for establishing such correlates because pathogen exposure can be precisely controlled and standardised across participants. However, the outcomes selected and the extent to which experimental inoculation reflects natural exposure may influence how immune responses mediate or correlate with protection. Here we present preliminary results of the first Australian FluCHIM in the context of previous influenza CHIM (FluCHIM) studies that identify different correlates of protection depending on their design.

The primary objective of our FluCHIM study was to determine influenza attack rates following intranasal challenge with 10^6 TCID₅₀ of a recombinant A/Texas/71/2017 (H3N2) virus. Exploratory analyses examined correlations between immune responses, virus shedding and symptoms. Eleven healthy adults aged 18-50 years with baseline serum hemagglutination inhibition (HAI) antibody titres $\leq 1:40$ against challenge-like virus were

inoculated between May – June 2025. Nasopharyngeal swabs were collected daily for seven days post-inoculation; blood and nasal lining fluid were collected on days 0, 3, 7, 14, 56, and 168 to assess influenza hemagglutinin (HA) and neuraminidase (NA)-reactive antibody and B-cell responses.

Ten participants (91%) shed influenza RNA on more than one day; seven had a Modified Jackson Score of ≥6 (symptomatic), while three remained below this symptom threshold. Six of the ten participants with viral shedding had a ≥4-fold rise in HAI titres consistent with seroconversion. The remaining participant reported symptoms and met seroconversion criteria but did not shed viral RNA. Whole-blood flow cytometry demonstrated mean fold-rises by day 7 of 3.2 (range 1.1-8.1) for plasmablasts, and 3.0 (range 0.8-9.1) for activated CD8+ T cells, which were associated with an antibody response and symptoms, respectively. Prechallenge NA inhibiting (NAI) antibody titres correlated weakly with the duration of infectious virus shedding but not with other outcomes. Only two participants demonstrated increases in serum NAI antibody titres, along with rises in peripheral blood NA-reactive B cells, whereas increases in HA-reactive B cells were more commonly seen across the challenge cohort.

These findings improve our understanding of systemic correlates of protection, while highlighting the need to integrate mucosal immunity, and its association with protection, into future FluCHIM studies to refine models relevant to emerging pandemic threats.

Day 2	Plenary Session 6
12:00	Viral Cartography: Tracing Influenza's Cellar Imprint
Speaker	Arutha Kulasinghe, Uni Queensland, Brisbane

Author

Arutha Kulasinghe

Affiliations

Frazer Institute, University of Queensland, Brisbane, QLD, Australia.

Abstract

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in late 2019 has spread globally, causing a pandemic of respiratory illness. A better definition of the host response to SARS-CoV-2 infection is required to understand viral pathogenesis and to validate putative COVID-19 biomarkers that have been proposed in clinical studies.

Methods: Here, we used spatial transcriptomics, proteomics and H&E assessments of formalin-fixed paraffin-embedded tissue to generate an in-depth picture of the pulmonary, cardiac and brain transcriptional landscape of COVID-19 with contrasts to pandemic H1N1 influenza and uninfected control patients.

Results: Host transcriptomics showed a significant upregulation of genes associated with inflammation, type I interferon production, coagulation and angiogenesis in the lungs of COVID-19 patients compared to non-infected controls. SARS-CoV-2 was non-uniformly distributed in lungs with the areas of high viral load associated with an increased type I interferon response. Strikingly, the interferon-associated gene *IFI27*, previously identified as a useful blood biomarker to differentiate bacterial and viral lung infections, was significantly upregulated in the lungs of COVID-19 patients compared to patients with influenza.

Conclusion: Collectively, these data demonstrate that spatial transcriptomics is a powerful tool to identify novel gene signatures within tissues, offering new insights into the pathogenesis of SARS-COV-2 to aid in patient triage and treatment.

Day 2	Plenary Session 7
13:00	Relative Effectiveness of Cell-Based Versus Egg-Based Quadrivalent Influenza Vaccines Across Paediatric Populations During the 2023-24 Influenza Season in the United States and Public Health Impact on Australia."
Speaker	Jules Bayliss, Seqirus, Melbourne

Authors

Alicia Stein¹, Anusorn Thanataveerat ², Kimberly McDermott², Alex Dean², Stephanie Wall², Cory Pack², Ian McGovern³, Sheena Sullivan⁴, Mendel Haag⁵

Affiliations

- 1. CSL Seqirus, Australia
- 2. Veradigm, USA
- 3. CSL Seqirus, USA
- 4. School of Clinical Sciences, Monash University, Australia
- 5. CSL Segirus, Netherlands

Abstract

Background: Egg-adaptive mutations occurring during egg-based influenza vaccine manufacturing can alter the antigenicity of the vaccine virus, contributing to reduced effectiveness. Previous studies have demonstrated improved effectiveness of cell-based (QIVc) versus standard-dose, egg-based (QIVe) quadrivalent influenza vaccines in the 2017-18 to 2019-20 and 2022-23 seasons in the United States. In Australia, QIVc was first registered in 2020 has been licensed for children and adults ≥6 months since 2023. Here, we report relative vaccine effectiveness (rVE) for the 2023-24 season in children aged 6 months to 17 years in the United States.

Methods: We used linked data combining electronic health records, medical and pharmacy claims, and laboratory tests from multiple sources in the United States. A retrospective test-negative design was applied among children aged 6 months to 17 years vaccinated with either QIVc or QIVe in 2023-24, who had an influenza test obtained within 7 days of an acute respiratory or febrile illness. rVE was estimated using a doubly robust logistic regression analysis for all children, younger children aged 6 months to 8 years, and older children aged 9 to 17 years.

Results: The dataset included 60,990 vaccinated and influenza-tested paediatric patients, of whom 7,194 (11.8%) received QIVc and 53,796 (88.2%) received QIVc. QIVc was significantly more effective than QIVe in preventing test-confirmed influenza in the full paediatric population, with an estimated rVE of 19.6% (95% CI: 13.6–25.3%). Consistent rVE results were observed across both paediatric age subgroups.

Conclusions: This study demonstrates superior effectiveness of QIVc compared to QIVe in preventing test-confirmed influenza in paediatric populations during the 2023-24 season in the United States. Substantial influenza burden could be prevented by use of cell-based instead of egg-based influenza vaccines in the paediatric population.

Day 2	Plenary Session 7
13:15	Cost-effectiveness of immunising interventions to reduce respiratory syncytial virus disease burden in infants in Australia
Speaker	Julian Carlin, University of Melbourne

Authors

Julian B. Carlin¹, Adrian J. Marcato¹, Yingying Wang², Robert Moss², Kylie S. Carville^{1, 3}, Xinghui Chen^{1, 2}, Victoria L. Oliver², Violeta Spirkoska¹, Patricia T. Campbell¹, David J. Price^{1, 2}, Natalie Carvalho², Jodie McVernon^{1, 3}

Affiliations

- 1. Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- 2. Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
- 3. Victorian Infectious Diseases Reference Laboratory Epidemiology Unit at the Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital, Melbourne, Victoria, Australia

Abstract

Two immunising products are emerging to prevent the burden of respiratory syncytial virus (RSV) in infants: long-lasting monoclonal antibodies (mAbs) and maternal vaccines given during pregnancy (MV). We assessed the potential cost-effectiveness of programs involving each product, to help inform policy decisions related to their implementation in Australia.

We developed an individual-based dynamic transmission model of RSV infection, linked to a clinical pathways model and cost-effectiveness model. We modelled key scenarios exploring varying eligibility and coverage of immunisation

products for at-risk and not-at-risk populations, in addition to sensitivity analyses of immunisation characteristics, program costs, and the impact of potential under-ascertainment of RSV burden. We estimated the cost-effectiveness of each program from a health system perspective, with results presented as incremental cost-effectiveness ratios in terms of cost per quality-adjusted life year gained (QALY).

We found a combined program in which administration of MV during pregnancy is supplemented with a birth-dose of mAbs for newborns born without protection from MV is likely to be cost-saving, compared to the status quo of no MV or mAbs delivered. This program averted on average 41% of infant hospitalisations per year and reduced QALY losses

Programs combining infant immunisation products are likely to significantly reduce the burden of RSV disease in Australia, and be cost-saving. However, their estimated impact and cost-effectiveness is strongly dependent on key assumptions i) the consistency and completeness of ascertainment of disease burden over time; ii) the cost of a hospitalisation and immunising dose; iii) the efficacy and durability of protection of the modelled products, and; iv) the timing and coverage of the immunisation delivery.

Day 2	Plenary Session 7
13:30	Australia's new incubator for vaccine and infectious disease innovation
Speaker	Jenny Herz, Biointelect, Sydney

Authors

Leanne Hobbs¹, Jennifer Herz¹²

Affiliations:

- 1. Biointelect Venture, Biointelect Pty LTD
- Biointelect Pty LTD

Abstract

Australia produces world-class research, yet faces persistent translational challenges that limit commercialisation and real-world impact. Systemic barriers include strong research output but low commercialisation outcomes, limited collaboration between research institutions and industry, under-support for SMEs to access funding, infrastructure, and expertise, funding skewed toward early discovery, fragmented and complex funding schemes, and insufficient training in commercialisation and product development requirements¹

Vaccines and infectious diseases - areas in which Australia's scientific capability is internationally recognised exemplify these challenges, particularly as not all infectious disease interventions present compelling returns on investment for the private sector. Since 2000, more than 600 vaccine-related technologies have been patented and over 100 clinical trials have been conducted in Australia, yet only a single vaccine has reached market². Most projects remain concentrated at Technology Readiness Levels (TRLs) 2-5, with few advancing beyond proof-of-concept. Despite Australia's established strengths in infectious disease research and immunology, this potential has not been fully realised through successful translation and commercialisation. With the growing threat of antimicrobial resistance and lessons from recent pandemics, infectious disease preparedness and vaccine development have become global priorities. Strengthening translation will be critical to ensure Australian research delivers tangible health impact locally, regionally, and globally.

¹ Department of Industry, Science and Resources. (2025). Strategic examination of R&D: discussion paper consultation findings and analysis. Australian Government.

² Biointelect. (2024). Australia's Vaccine Value Chain Conference. [Unpublished presentation]. Biointelect Pty Ltd.

The inaugural Australian Vaccine Value Chain Conference (AVVCC24), which convened over 215 key opinion leaders across academia, industry, government, and investors, reinforced these findings³. Its outputs called for stronger national coordination, clearer roles and accountabilities, greater engagement of end users across the whole value chain, and the establishment of public-private partnerships to accelerate translation, commercialisation, and equitable access.

In response, the Medical Research Future Fund has funded, under the BiomedTech Incubator Grant Opportunity, Biointelect Venturer (BV). BV is a new national, virtual incubator dedicated to accelerating vaccines, vaccine-related technologies and immunotherapies for the prevention of infectious diseases. Over four years, BV will deploy \$25 million in direct SME and spinout support to address the translational "valley of death" at TRLs 2-6, where traditional grants rarely apply and private capital is not yet engaged. Beyond funding, BV provides structured support in translational planning, regulatory and clinical strategy, non-clinical studies, and early-phase trials, complemented by expert mentorship, project consultants, targeted masterclasses, and facilitated access to investors and enabling infrastructure. This integrated model is designed to convert early breakthroughs into investment-ready opportunities and attract follow-on funding. By supporting technologies with strong commercial potential as well as those with clear global health benefit, BV ensures that investments deliver societal value while building a sustainable pipeline of innovation.

BV aligns with several recent national policy priorities and strategies 1 , which emphasise sovereign capability, pandemic preparedness, preventive health, community engagement and more coordinated national investment. By addressing translational gaps and integrating AVVCC insights, BV aims to bridge the valley of death between discovery and market, enhance sustainability of innovation, and ensure Australian breakthroughs deliver both societal and global health benefits.

Day 2	Plenary Session 7
13:45	Epidemiology of respiratory syncytial virus (RSV) within a New South Wales-based multi-centre health district between 2018-2024 in Australia
Speaker	Zubair Akhtar, Kirby Institute, Sydney

Akhtar, Z.1, Notaras, A.1, Tawfiq, E.1, Kunasekaran, M.1, MacIntyre, C.R.1, Rawlinson, W.2,3, Walker, G.2,3 **Affiliations**

- 1. Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- 2. School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- 3. Virology Research Laboratory, Serology and Virology Division (SAVID), NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia

Abstract

Background: RSV epidemiology in Australia is unclear given recent advances in diagnostic testing, COVID-19 interventions and under-recognition in older adults. Data is needed to inform new RSV vaccine use.

Methods: We analysed laboratory data from all viral respiratory RT-qPCR diagnostic tests conducted at NSW Health Pathology in the South-Eastern Sydney and Illawarra Health Service from 2018-2024. Panel and descriptive analyses were used to report annual RSV testing and detection by age group, care setting, and co-infection with other respiratory viruses using Stata v.18.

Results: Of 370,126 unique episodes tested for RSV, there were 13,293 (3.6%) detections across all age groups (Table 1). Public health measures for COVID-19 significantly impacted RSV circulation in 2020, with detections near-absent in the winter season (June-August), and an off-season epidemic occurring in the summer. Annual testing and detection peaked in 2022, and was considerably higher compared to pre-pandemic years (testing 6.3-fold and detection 3.4-fold higher than 2019, respectively). Across the study period, incidence was highest in children <5 years (1,613 per 100,000 population). Among older adults (≥60 years age), the prevalence was 125 per 100,000. Testing was primarily performed in outpatients (71%), of which emergency departments were the most frequent care setting (49%). Of all detections, 2,713 (20.4%) had co-infections, with the most commonly co-detected viruses being rhinovirus (37%) and

Conclusion: RSV testing increased from 2022 due to expanded respiratory screening, RSV becoming a notifiable disease, and COVID-19 epidemics. Multiplex RT-qPCR testing increased RSV detection, but testing bias exists, with

³ Department of Health, Disability and Ageing. (2025) National Health and Medical Research Strategy 2026-2036. Australian Government.

children tested more than adults. Continued surveillance across age groups is essential to assess new immunization strategies' impact.

Table 1. Annual RSV testing, detection, within the SESIHS, 2018-2024

RSV test and results		<1 year	1-5 years	6-18 years	19-50 years	51-60 years	61-70 years	>70 years	Total
2018-2024 (n=370,126)	Tested (%)	15,899 (4.3)	42,494 (11.5)	25,700 (6.9)	81,232 (21.9)	28,893 (7.8)	39,461 (10.7)	136,447 (36.9)	370,126
	Detections (%)	2,905 (18.3)	5,530 (13)	605 (2.4)	1,204 (1.5)	392 (1.4)	579 (1.5)	2,078 (1.5)	13,293 (3.6)
,519)	Tested (%)	1,144 (7.9)	2,368 (16.3)	1,080 (7.4)	2,352 (16.2)	1,077 (7.4)	1,666 (11.5)	4,832 (33.3)	14,519
2018 (n=14,519)	Detections (%)	316 (27.6)	395 (16.7)	41 (3.8)	63 (2.7)	28 (2.6)	69 (4.1)	255 (5.3)	1,167 (8.0)
2019 (n=22,794)	Tested (%)	1,338 (5.9)	3,081 (13.5)	1,600 (7.0)	3,994 (17.5)	1,768 (7.8)	2,616 (11.5)	8,397 (36.8)	22,794
2019 (n=22	Detections (%)	318 (23.8)	413 (13.4)	46 (2.9)	63 (1.6)	36 (2.0)	81 (3.1)	300 (3.6)	1,257 (5.5)
,687)	Tested (%)	809 (5.5)	1,965 (13.4)	1,035 (7.1)	3,494 (23.8)	1,215 (8.3)	1,513 (10.3)	4,656 (31.7)	14,678
2020 (n=14,687)	Detections (%)	199 (24.6)	383 (19.5)	28 (2.7)	53 (1.5)	13 (1.1)	21 (1.4)	63 (1.4)	760 (5.2)
,463)	Tested (%)	1,158 (9.3)	2,711 (21.8)	787 (6.3)	1,584 (12.7)	727 (5.8)	1,122 (9.0)	4,374 (35.1)	12,463
2021 (n=12,463)	Detections (%)	151 (13.0)	253 (9.3)	18 (2.3)	26 (1.6)	9 (1.2)	33 (2.9)	114 (2.6)	604 (4.9)
2022 (n=143,511)	Tested (%)	3,266 (2.3)	13,077 (9.1)	8,574 (6.0)	42,029 (29.3)	12,701 (8.9)	15,463 (10.8)	48,403 (33.7)	143,513
2022 (n=14	Detections (%)	601 (18.4)	1,721 (13.2)	235 (2.7)	632 (1.5)	155 (1.2)	157 (1.0)	461 (1.0)	3,962 (2.8)
2023 (n=100,63	Tested (%)	3,306 (3.3)	11,449 (11.4)	6,859 (6.8)	18,452 (18.3)	7,243 (7.2)	11,209 (11.1)	42,120 (41.9)	100,638
2023 (n=10	Detections (%)	551 (16.7)	1,469 (12.8)	127 (1.9)	241 (1.3)	90 (1.2)	139 (1.2)	496 (1.2)	3,112 (3.1)
2024 (n=61,512)	Tested (%)	4,878 (7.9)	7,843 (12.8)	5,765 (9.4)	9,327 (15.2)	4,162 (6.8)	5,872 (9.5)	23,665 (38.5)	61,512
2024 (n=61	Detections (%)	769 (15.8)	896 (11.4)	111 (1.9)	126 (1.4)	61 (1.5)	79 (1.4)	389 (1.6)	2,431 (4.0)

Tested = Test numbers (Test numbers/ Total tests, %); Detections = Tested positive (Tested positive/Total tests, %).

Day 2	Plenary Session 7
14:00	Are known influenza or COVID-19 infections documented in Australian hospital databases?
Speaker	David Muscatello, UNSW, Sydney

Authors

David Muscatello¹

Affiliations

1. School of Population Health, University of New South Wales, Randwick, NSW, Australia

Abstract

Introduction

Influenza and COVID-19 are major causes of severe acute respiratory infections in Australia. This record linkage study aimed to determine the proportion of notified influenza and COVID-19 infections recorded in administrative hospital datasets, what other diagnoses are used and what factors are associated with the infection not being recorded. *Methods*

This was a descriptive and logistic regression analysis of inpatient admissions from the PEARL probabilistic record linkage database of emergency department, infection notification, hospitalisation and death records. It includes a cohort of all patients with an acute respiratory infection-like diagnosis presenting to an emergency department (ED) participating in the NSW Emergency Department Data Collection, 1 January 2005 – 28 February 2023. Dual infections (n=189) were excluded and the first inpatient episode was used for principal diagnosis analysis, if >1 episode. *Results*

During the study period, there were 37,928 inpatients with notified influenza from presentations to 174 hospitals, and 36,307 with notified COVID-19. Among influenza inpatients, 6.8% had ICU admission and 2.9% died. For COVID-19, 8.4% had ICU admission and 6.1% died.

For influenza infections, 21.3% of the ED presentations with inpatient admission had influenza or influenza-like illness recorded as a principal ED diagnosis and, for COVID-19, 78.1% had COVID-19 or coronavirus recorded. Other common ED diagnoses were fever or non-specific infection, pneumonia, and breathing problems. For influenza, 59.4% had an influenza principal admission diagnosis and 75.8% had influenza among any diagnoses. For COVID-19, 11.2% had a COVID-19 principal admission diagnosis and 92.9% had COVID-19 among any diagnoses. Pneumonia was the most common other principal admission diagnosis for both infections.

After adjusting for available confounders, the factors most strongly associated with influenza *not* being recorded in any admission diagnosis were age 15-44 years, lower urgency at ED triage, absence of a virus-specific ED diagnosis, briefer hospital stay, being tested prior to ED arrival, and presenting earlier in the study period. For COVID-19, results were similar but also included not arriving by ambulance and not receiving intensive care. Presentation during the Omicron variant period (from December 2021) was strongly associated with absence of a COVID-19 diagnosis. *Conclusions*

Disease surveillance and research relying on hospital records in Australia will underestimate the incidence of outcomes of influenza and COVID-19 infections. Young adults, persons tested prior to hospital arrival and lower urgency or less complex cases are likely to be under-represented. Influenza capture has improved over time and COVID-19 was best recorded earlier in the pandemic.

Day 2	Plenary Session 7
14:15	The NSW 2024 RSV immunisation program: targeted effectiveness and population level impact
Speaker	Janaki Amin, Health Protection NSW, NSW Ministry of Health

Authors

Chris Lambeth¹, Sally Ellis¹, Mareeka Hair¹, Sonya Ennis¹, Elizabeth Wilson¹, Christine Selvey¹, Janaki Amin^{1,2,3} **Affiliations**

- 1. Health Protection NSW, NSW Health
- 2. Department of Health Sciences, Macquarie University
- 3. The Kirby Institute, University of NSW

Abstract

Respiratory syncytial virus (RSV) is a common cause of respiratory tract infections with the highest rates of diagnosed infection and hospitalisation in young children. In clinical trials the long acting monoclonal antibody against RSV, nirsevimab, reduced risk of hospitalisation by nearly 80%. In March 2024, NSW Health implemented a program to immunise with nirsevimab, babies at high-risk of severe outcomes from RSV infection: premature infants <37 weeks gestation, Aboriginal and Torres Strait Islander infants and other infants with specific complex conditions. 6416 infants were immunised, an approximate coverage of 8% infants <6 months of age and 1922 (42%) of premature infants. Among premature infants the rate of RSV hospitalisations was 2.7/100,000 days at risk compared with 12.1/100,000 days at risk among unimmunised infants; demonstrating immunisation effectiveness using the screening method of 85.% (95% CI 71.9%, 92.8%). Population level impact of the program was assessed by comparing the relative rates (RR) of RSV outcomes in infants aged 0-<6 months to those in infants aged 6-<12 months in 2023, before the program began, and 2024, the intervention year. Comparison against the older age group was used to account for differences in amount of circulating RSV between the two years. For diagnosed RSV infection, the RR for 2024, 0.73 (95%CI 0.70-0.76) was significantly lower than for 2023, RR 0.91 (95%CI 0.87-0.95). Similarly for RSV hospitalisations, the 2024 RR 1.59 (95%CI 1.49-1.69) was significantly lower than for 2023 RR 1.87 (95%CI 1.75-1.99). NSW Health was able to rapidly roll out nirsevimab to high-risk infants. While the program only targeted infants most at risk of severe

outcomes and was highly effective in this group, a significant population impact was also demonstrated. This targeted strategy for RSV prevention should be considered in resource limited settings.

Day 2	Plenary Session 8
15:00	Seek and You Will Find: Co-Circulating Viruses in Epidemiology and Effectiveness Studies
Speaker	Emily Martin, University of Michigan, USA

Day 2	Plenary Session 8
15:30	Hogging the Flu? Surveillance and Immune Gaps at US Swine Exhibitions
Speaker	Andy Bowman, Ohio State University, USA

Authors

Dillon S. McBride¹, Hannah J. Cochran¹, Jacqueline M. Nolting¹, Andrew Bowman¹ **Affiliations**

1. The Ohio State University, Department of Veterinary Preventive Medicine

Abstract

Zoonotic influenza A virus (IAV) transmission at US swine exhibitions presents an ongoing pandemic risk, yet active surveillance in the high-risk youth exhibitor population is lacking. To address this gap, we enrolled 711 youth participants at nine swine exhibitions during 2019-2021, collecting 700 nasal swabs and 400 serum samples. We assessed neutralizing antibody titers against eight swine-origin IAV candidate vaccine viruses (CVVs) and characterized 430 IAV strains circulating in exhibition swine. Although H3 cluster IV (clade 3.1990.4.a) became the dominant HA lineage in exhibition swine during 2020-2021, we found that the mean neutralizing antibody titers in the exhibitor cohort were low against this specific lineage. This resurgence of the 3.1990.4.a H3 lineage in swine did not correspond to an increase in reported human variant cases or a rise in antibody titers within our study samples. These results indicate relatively low seroprotection against a dominant, circulating swine IAV lineagthis high-risk population, highlighting a public health vulnerability at the swine-human interface. Building on this pilot work, the North American Swine-exhibitor Active Longitudinal Surveillance (NASALS) cohort was established in 2021 to better examine the viral, host, and environmental factors that facilitate interspecies transmission in this frontline population. Baseline blood samples and medical histories were collected at enrolment, followed by early- and late-exhibition season blood draws each subsequent year. Serum samples (n=456) drawn from 262 participants over two years (2022-2024) were tested against six CVVs representing clades known to circulate in the U.S. swine population. This longitudinal analysis revealed that while nearly all samples (98.9%) had a neutralizing antibody response to H1 clade 1B.2.1, the geometric mean titer (GMT) was only 81.3. Additionally, only 74.8% responded to H1 clade 1B.2.2.1, with a GMT of just 26.9. Given that these clade 1B.2.2.1 viruses are actively circulating in US swine, these relatively low GMTs in a high-exposure cohort suggest a persistent immunologic gap, emphasizing the continued pandemic risk of swine-lineage IAV.

2025 Delegates

Abigail Fernando | Murdoch Children's Research Institute

Ada Yan | RMIT University

Adam Wheatley | University of Melbourne

Adam Baker | Australian Vaccine Services

Adrian Marcato | Peter Doherty Institute

Agnes Chaumont | GSK

Ahmed Abdul Quadeer | University of Melbourne

Aimee Oldham | The Royal Melbourne Hospital

Al Gomez | Interim Australian CDC

Al Gomez | Australian CDC

Alan Hampson | International Society for Respiratory Viruses

Alexandra Hinchcliff | Menzies School of Health Research

Ali Shushtarian | bioMerieux

Alissa McMinn | Murdoch Children's Research Institute

Amy Lowry | GSK

Anastasia Moisidis | CSL Limited

Andrea Parisi | NSW Ministry of Health

Andrew Bowman | The Ohio State University

Andrew Pollitt | Bass Coast Health

Andy Bean | CSIRO

Anjana Karawita | CSIRO

Anna Lucantoni | Thermo Fisher Scientific

Anne Hahn | University of Melbourne

Anne Maree Baldwin | Queensland Health

Annette Alafaci | Murdoch Children's Research Institute

Ann-Maree Catanzariti | The Therapeutic Goods Administration

AnnMarie McEvoy |

Anthony McGuire | CSL Behring

Ariful Islam | Gulbali Research Institute, Charles Sturt University

Arjun Challagulla | CSIRO

Ash Donovan | Interim CDC

Ashiyana Khairati | IPN Medical

Belinda Hengel | Kirby Institute UNSW

Ben Cowling | Hong Kong University

Bingru Wu | Deakin University

Bridie Clemens | The University of Melbourne

Caitlin Trenorden | Department of Health, Disability and Ageing

Callum Le Lay | CSIRO - ACDP

Catherine Agius | Seqirus

Celeste Donato | Doherty Institute

CHALANI WELGAMA | CSL Seqirus

Chantal Baas | Segirus

Cheryl Freeman | Pfizer

Chinn Yi Wong | The University of Melbourne

Christine Cooper Serra | Pfizer

Christopher Hum | Cepheid

Cleve Rynehart |

Connor Daymond | University of Melbourne

Craig Dalton | HNE Health

Crissa Kyriazis | Biocelect

Cristina Triffon | Monash University

Daniel Yu | CSL Segirus

David Speers | PathWest

David Muscatello | UNSW Sydney

Debbie Kisa | Papua New Guinea Institute of Medical Research

Deborah Cromer | UNSW

Desiree Anthony | Sanofi

Doaa Ibrahim | Seqirus

Edin Mifsud | Pfizer

Edith Rosenberg | Seqirus Elizabeth Siu | Biomerieux

Ellie Robinson | Victorian Department of Health

Emily Hann | CSIRO/Deakin University

Emily Martin | University of Michigan School of Public Health

Emily Armstrong | AstraZeneca Pty. Ltd

Eric Lau | Deakin University

Erik Karlsson | Institut Pasteur du Cambodge

Erin Matthews | Seqirus

Esther Marton | CSL Seqirus

Fiona Jennings | Rewlin Pty Ltd

Fiona Sorbian | VACCHO

Francesca Mercuri | The University of Melbourne

Frank Beard | National Centre for Immunisation Research and

Surveillance

Freya Shearer | The University of Melbourne

Gavin Smith | Programme in Emerging Infectious Diseases, Duke-

NUS Medical School

Gazala Buksh | Ministry of Health and Medical Services, Fiji NIC

George Milne | UWA

George Andrakakos | Abbott

Georgia Dow | La Trobe Institute for Molecular Science

Georgia STORMONT | Dorevitch Pathology

Gregory Walker | University of New South Wales

Hannah Morgan | Monash University

Haytham Mohamed | WHO

Heidi Peck | WHO CC for Influenza

Helen Cowdery | CSL Segirus

Helen Malliaras | CSL Segirus

Himanshu Kaushal | ICMR-National Institute of Virology, Pune

Holly Gardner | Clinical Trial Coordinator

Ian Napier | Segirus

Isabelle Foo | The University of Melbourne

Jacqueline Lewis | Vaccine Research Group

James McCaw | University of Melbourne

Jan Beacham | Vitality Works

Janaki Amin | Health Protection NSW

Janet Briggs | Vaccine Research Group-UOM
Janet Strachan | Department of Health Victoria

Jasmina Luczo | CSIRO Australian Centre for Disease Preparedness

Jeanetta Barker | Vaccine Research Group

Jenna Hassall | Interim Australian Centre for Disease Control

Jenny Royle | VACCHO

Jenny McKimm-Breschkin | The Doherty Institute

Jessica Neil | The University of Melbourne
Jessie Goldsmith | University of Melbourne

Joann Todhunter | CSL Seqirus Joanne Hickman | Monash Health

John Stambas |

John Smith | Australian Vaccine Services

Julie McAuley | Doherty Institute, Melbourne University

Julie Heath | Barwon Health
Karen Laurie | CSL Seqirus
Karen Mureya | Mureya

Karen Detering | Department of Health, Disability and Ageing

Karl Herz | Biocelect Kate Dohle | MCRI

Kateri Bertran Dols | IRTA-CReSA Katherine Santos | Seqirus

Kathryn Edenborough | The University of Melbourne

Katrina Micallef | CSL Seqirus Kaz Bellamy | Monash Health

Kerry Mullan | University of Melbourne Kim Valentine | Sandringham Hospital

Kirsten Spann | Queensland University of Technology

Kylie Carville | VIDRL

Kylie Ainslie | University of Melbourne Kyu Lee | University of Washington Lara Schwab | University of Melbourne

Lauren Burmas | WHOFLU CCRI

Lauren Kutzner | Interim Australian Centre For Disease Control

Lauren Welsh | Department of Health and Aged Care

Lee Campbell | University of Sydney

Lex Leong | SA Pathology

Lien Anh Ha Do | Murdoch Children's Research Institute

Lilith Allen | The Peter Doherty Institute for Infection and Immunity

Linda Curran | CSL Seqirus Lisa Steinberg | Seqirus

Lisa Kerr | Therapeutic Goods Administration

Ludivine Grzelak | Doherty Institute

Lynda Allan | Seqirus Maddy Belfrage | CSIRO

Magalutcheemee Ramuth | Ministry of Health and Wellness,

Mauritius / University of Witswatersrand

Maha Khairbak | WHO Collaborating Centre for Reference and

Research on Influenza
Mahbubur Rahman I

Malet Aban | WHO Collaborating Centre for Reference and

Research on Influenza

Malvin Ooi | VC

Mante Thobejane | University of Cape Town

Marcia Lee | CSL

Marcus Robinson | Monash University

Margaret Scott | AusHealthConsulting

Marios Koutsakos | University of Melbourne

Matt Wenham | CSL Seqirus

Matthew Smallridge | CSIRO

Matthew Gartner | University of Melbourne

Mazmah Ahmad Morshidi | National Virology Reference Laboratory

Meagan McMahon | CSL Seqirus

Merrin Tulloch | AstraZeneca

Mia Campling | CSIRO

Michelle Bausch | Therapeutic Goods Administration, Department

of Health, Disability and Ageing

Michelle Renwick | University of Melbourne

Monique Chilver | The Australian Sentinel Practices Research

Network (ASPREN) Najwa Ejje | Sanofi

Natasha Hutchison | CSL Seqirus Nicola Konstantinidis | CSL Seqirus Nicole Baker | Bass Coast Health Nigel Stocks | Adelaide University

Nikki Moreland | The University of Auckland

Nikolai Petrovsky | Australian Respiratory and Sleep Medicine

Institute

Oliver Eales | University of Melbourne
Olivia Lay | WHOCCRRI Melbourne

Pamela Djukic | Cepheid

Patrice Cassar | Wyndham Council Patrick Schaeffer | Schaeffer

Patrick Reading | WHO Collaborating Centre for Reference and

Research on Influenza, Melbourne Paul Van Buynder | Griffith University

Paul Griffin | Mater Hospital

Pearl Bamford | Therapeutic Goods Administration

Pengxing Cao | University of Melbourne

Pete Campbell | CSL

Pollyanna Goh | Therapeutic Goods Administration

Presa Chanthalavanh | WHO Collaborating Centre for Reference and

Research on Influenza

Rachel Wordsworth | WHOFLU

Rebecca Rockett |

Rebecca Johnson | University of Melbourne (Department of

Microbiology and Immunology)

Rebecca Mascarenhas | Pfizer Australia

Reena Mukhiya | Burnet Institute

Robert Moss | University of Melbourne

Robert Booy |

Rozainanee Mohd Zain | Institute for Medical Research, National

Institutes of Health, Malaysia

Ruth Hagen | The Peter Doherty Institute for Infection and

Immunity

Ryan Kim | Department of Health, Disability and Ageing

Sally Soppe | WHOFLU

Samuel Wilks | University of Melbourne

Sandra Carlson | HNE Health

Sarah Mercier | TGA

Sarah Londrigan | University of Melbourne

Sarah Pitts | Monash Health

Sarah MILES | Dorevitch Pathology Sarah Yallop | Doherty Institute

Sherrie Trehan | Vitality Works

Siang Tia | Tia

Simone Parkes | Biocelect

Siobhan St George | Interim Australian Centre for Disease Control

Socheata Chea | TGA

Sohail Khan | Veterinary Research Institute Peshawar Pakistan

Sophie Valkenburg | The University of Melbourne

Sophie Syddall | Seqirus

Stacey Allen | CSIRO

Stella Liong | RMIT University

Stephanie De Dios | TGA

Stephanie Curtis | Alfred Health

Steve Rockman | CSL Seqirus

Stuart Adams | Hunter New England Health

Susan Marquez | St John of God Healthcare

Suzie Whitehead | Interim Australian Centre for Disease Control

Swapna Kunche | CSL

Syed Awais Wahab Shah | University of Melbourne

Syed Faraz Ahmed | University of Melbourne

Symone Mercuri | WHOCCRI

Jessica Miller | WHO Collaborating Centre for Reference and

Research on Influenza

Tasoula Zakis | WHO Collaborating Centre for Reference & Research

on Influenza, Melbourne

Toan Hong | CSIRO

Tra Nguyen | National University of Singapore

Trinh Perkins | CSL

Tuck-Weng Kok | University of Adelaide

Unaiza Parkar | Thermo Fisher Scientific

Upasna Varma | GSK

Veerapat Wongsirojkul | University of Melbourne

Victor Oti | Griffith University
Vidya Bhardwaj | CSIRO ACDP
Vince Matassa | CSL Segirus

Vincent Lee | Federal Government Agency or Commonwealth

Entity

Violeta Spirkoska | University of Melbourne

Will Horman | Segirus

Wing Wah (Vera) Tse | HNELHD - Health Protection (FluTracking)

Xiaomin Dong | WHO Collaborating Centre for Reference and

Research on Influenza in Melbourne

Xinghui Chen | University of Melbourne

Yashar Seyed Razavi | TGA

Yashwant Sinha | TGA

Yasmin Lisson | Interim Australian Centre for Disease Control

Yichen Yang | University of Melbourne Yongyan Xia | University of Melbourne Zainun Zaini | Ministry of Health Brunei

Zhixin Liu | Healthdirect Australia

Ziheng Zhu | University of Melbourne

Notes

WHO Collaborating Centre for Reference and Research on Influenza

Peter Doherty Institute for Infection and Immunity

792 Elizabeth Street, Melbourne VIC 3000, Australia

ph: +61 3 9342 9300 Fax: +61 3 9342 9329

Email: enquiries@influenzacentre.org

http://www.influenzacentre.org